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Abstract—IoT-Fog system security depends on intrusion 

detection system (IDS) since the growing number of Internet-of-

Things (IoT) devices has increased the attack surface for cyber 

threats. The dynamic nature of cyberattacks often makes it 

difficult for traditional IDS techniques to stay up to date. 

Because it can adapt to changing threat landscapes, deep Q-

reinforcement learning (DQRL) has become a potential 

technique for ID in IoT-Fog situations. In this paper, an IDS 

system for IoT-Fog networks based on DQRL is proposed. The 

suggested solution makes use of fog nodes' distributed 

computing power to provide real-time IDS with excellent 

accuracy and minimal latency. With feedback from the network 

environment, the DQRL agent learns to recognize and 

categorize network traffic patterns as either normal or 

intrusive. Adaptive exploration techniques, effective reward 

functions, and deep neural networks for feature extraction are 

adopted by the system to improve predictive performance. The 

evaluation findings show that, in terms of detection accuracy, 

precision, recall and f-measure, the proposed DQRL provides 

flexibility to changing threat patterns as compared to 

conventional IDS techniques. A vast array of cyberattacks, such 

as malware infections, denial-of-service (DoS) attacks, and 

command-and-control communications, are successfully 

recognized and categorized by the system. It is possible that the 

suggested solution will be crucial in safeguarding IoT-Fog 

networks and preventing cyberattacks 
Keywords— Internet of Things, Fog Computing, Intrusion 

detection system, Deep Q-Reinforcement Learning, Performance 

Evaluation. 

I. INTRODUCTION 

The Internet of Things (IoT) and Fog computing have fused, 

transforming technology. Data processing and network organization 

have changed, creating new opportunities and difficulties. IoT 

devices—intelligent sensors, actuators, and networked devices—are 

driving this shift. Industry includes smart cities, healthcare, 

industrial automation, and environmental monitoring [1]. IoT 

devices have become essential to current data ecosystems, enabling 

massive data collecting, processing, and transmission at extreme 

rates. The rise ofIoT devices has made networks more vulnerable to 

various threats, notwithstanding this innovation. 

Many industries use IoT devices, a significant driver of this 

paradigm change. These devices improve infrastructure in "smart 

cities," monitor vital signs in healthcare, and optimize 

manufacturing processes in "industrial automation." processing, 

Data sensing, and transmission efficiency make IoT devices 

appealing [2]. They can be used in an intelligent factory's automated 

assembly line, a hospital's patient monitoring system, or A city's 

traffic management system. These devices' ubiquitous availability 

and versatility signal their transformative potential.But as IoT 

devices spread, they've also shown the ugly side of the technological 

revolution. Due to their low processing storage space, power, and 

battery life, bad guys target these devices. Unauthorized access, data 

breaches, and malware infections are common cybersecurity 

concerns for IoT devices, but DDoS attacks, botnet infiltrations, and 

data exfiltration are more insidious. Due to their limited security 

resources, IoT devices are vulnerable to several assaults [3]. This 

issue emphasizes the need for innovative security methods to secure 

IoT systems and their sensitive data without overburdening these 

devices' limited capabilities. 

 

Fog computing represents a crucial architectural approach to address IoT 

device limitations. FOG computing brings cloud capabilities to the network 

edge, unlike traditional cloud computing. Move processing power closer to 

the action to increase responsiveness, real-time decision-making, and 

bandwidth utilization. Nodes and gateways in the Fog layer process data 

near IoT devices. Fog computing's distributed nature solves latency-

sensitive applications and IoT data mountains.However, Fog computing 

has security requirements. As data processing shifts to the periphery, a 

network's attack surface expands [4]. IoT-Fog systems must be protected. 

Defending against today's growing number of network breaches, 

vulnerabilities, and new attack vectors requires robust Fog layer intrusion 

detection and response. Secure Deep Q-Reinforcement Learning 

Framework, a cutting-edge solution for IoT-Fog system security, addresses 

this demand.For urgent IoT-Fog system technical and security challenges, 

a Secure Deep Q-Reinforcement Learning Framework was created. IoT 

devices have limited processing speed, storage space, and battery life. 

These restrictions expose them to several attacks. Resource-limited IoT 

devices can face DDoS attacks, virus breakouts, and unauthorized data 

access. They need imaginative security techniques to protect these gadgets 

without using too much of their limited resources [5]. 

Fog computing addresses IoT computational and latency issues. Bringing 

data processing and analytics closer to the network edge improves 

performance using fog computing. This distributed computing model raises 

security concerns, particularly in Fog layer network intrusion detection. 

Fog computing connects edge devices to cloud servers by processing, data 

storage, and communications. Nodes in fog computing are heterogeneous 

and deployed in many scenarios. Fog software should manage resources 

effectively.  Figure 1 shows the Fog software architecture's main 

components. 



 
Figure 1 Fog software architecture's main components [6] 

A significant challenge is the ever-changing threat landscape. The 

ways hackers use to break into networks and systems change and get 

more complex. Cyberattacks are becoming increasingly difficult, so 

traditional security methods typically fall behind. Automated 

security solutions that identify, evaluate, and stop emerging threats 

are popular [7]. By merging machine learning with decision-

making, Reinforcement Learning can address these shifting security 

challenges. This research helps solve IoT-Fog system technical and 

security challenges. In this study, we describe an IoT-Fog-specific 

security architecture. This technique uses Fog computing to protect 

IoT devices' data-generating and processing sites from network 

vulnerabilities. This case helps the framework overcome difficulties 

and reap the benefits of IoT-Fog settings. Based on deep neural 

networks and reinforcement learning, Deep Q-reinforcement 

learning is a robust machine learning paradigm. Deep Q-

reinforcement understanding lets the framework swiftly discover 

complex patterns, learn from past experiences, and make decisions. 

This capability considerably improves real-time network intrusion 

detection and proactive response. Introduce a detailed system model 

to operationalize the concept.  

This paradigm governs the interactions between IoT devices, Fog 

nodes, and cloud computing resources. Designing and testing the 

suggested security framework is guided by the system model.An 

empirical study evaluated the framework in realistic IoT-Fog 

situations. The following sections detail the framework's pros and 

cons, revealing its efficiency and improvement possibilities. Finally, 

this paper offers a Secure Deep Q-Reinforcement Learning 

Framework to address IoT-Fog system technical and security 

challenges, and it also examines the architecture, system model, 

empirical results, comments, and future research directions for IoT-

Fog network intrusion detection. 

 

II. REALTED WORK 

Sudqi Khater et al. introduced lightweight MLP-based vector space 

representation [8]. Next, they tested the suggested approach on the 

Australian Defense Force Academy Windows Dataset (ADFA-WD) and 

ADFA with Linux Dataset (ADFA-LD), a new generation system dataset 

featuring exploits and attacks on numerous programs. An et al. [9] reported 

apriori-inspired hypergraph clustering. We found the susceptible FCs link 

through our research. DDoS analysis ensured the model's resource 

consumption rate could be pushed. 

Mourad et al. [10] developed a fog-assisted vehicular edge 

computing (VEC) system to offload IDS functions to federated 

automobile nodes in the low-latency ad hoc vehicular fog. Abdel-

Basset et al. [11] developed a forensics-based DL (Deep-IFS) to 

detect IIoT traffic breaches. In addition to LocalGRU-learned local 

representations, the proposed MHA learns and captures global 

graphics with longer-range dependencies. Layers have a residual 

connection to prevent data loss. Pacheco et al. [12] presented an 

adaptive IDS based on ANN to identify fog node tampering and 

ensure transmission accessibility. 

Prabavathy et al.  [13] offer an online sequential extreme learning 

machine (OS-ELM) fog computing detection method. The 

proposed technique involves two steps: attack detection at local fog 

nodes and a cloud server summary of the IoT system. A 97.36% 

success percentage was achieved while testing this model on the 

NSL-KDD dataset. The authors claim fog nodes detect 25% faster 

than cloud-based implementation. Diro and Chilamkurti[14] used 

fog computing to create an IoT IDS. The authors suggested a 

distributed deep-learning intrusion detection system. Experimental 

results show that distributed parallel architecture is more accurate 

than centralized model. We train and test the IDS using the 

NSL[1]KDD dataset. With a 4.97% false alarm rate, the model 

detected 93.66 per cent of events. 

The authors of [15] suggest creating a framework to discover all 

attack channels and counteract IoT system threats. The five-stage, 

interconnected graphical security model begins with data 

processing, where system data and security metrics are provided 

and processed. Security and gap models are constructed in the 

second stage. All IoT system attack vectors are represented in this 

model. The attack path shows how attackers can penetrate nodes to 

reach their target. Security visualization and analysis of the IoT 

network, including attack pathways, occur in the third and fourth 

stages. Malware detection and prevention in IoT networks were 

suggested in [16]. Fog computing is critical to improving virus 

detection and data security. Cloud and fog computing powered the 

malware detection system and circumvented smart device IDS 

deployment limits]. A framework was created to demonstrate the 

potential of IoT networks to limit malware proliferation. Using the 

ADFA-LD and ADFA-WD datasets, Borisaniya et al. [17] 

developed a modified vector space representation technique with 

multiple classifiers to obtain above 95% detection accuracy. 

Frequency-based models helped Xie et al. [18] detect ADFA-LD 

attack behaviour with a false positive rate of less than 20%.  

Xie et al. [19] applied a one-class SVM model to short sequences 

like their predecessors. Overall, they improved, although false 

positives were close to 20%. A semantic model for anomaly 

identification using ADFA-LD Dataset short sequences is presented 

by G. Creech et al. [20]. They constructed a lexicon of words and 

phrases from the dataset and tested it with HMM, ELM, and one-

class SVM algorithms. They achieved 15% FPR with ELM and 

80% with SVM [29,30]. They assessed ADFA-WD using HMM, 

ELM, and SVM. HMM had 100% accuracy with 25.1% FPR, ELM 

91.7% with 0.23% FPR, and SVM 99.58 % with 1.78% FPR.Illy et 

al. [21] presented a lightweight Fog-to-Things IDS. Using 

numerous base learners trained with well-established methods, the 

suggested method created multiple ensemble classifiers to 

recognize and categorize attacks. The NSL-KDD dataset shows that 

the IDS model outperforms alternative fog computing intrusion 

detection methods [22]. The recommended way has high binary and 

multiclass classification accuracy. Pacheco et al. [23] suggested 

artificial neural network intrusion detection for IoT fog nodes. The 

recommended solution restores connectivity after identifying a 

compromised fog node. Whether from hacking or hardware 

failures, the proposed solution worked in experiments. 

Our Secure Deep Q-Reinforcement Learning Framework bridges 

Fog computing and deep reinforcement learning to help IoT-Fog systems 

detect network intrusions. This connection creates a proactive, flexible 

security solution to handle new threats. 

   



III. PROPOSED FRAMEWORK 

In this section, proposed IoT fog based task offloading framework is 

introduced. Performance indexes including latency and the corresponding 

energy consumption are formulated for specific offloading scheme. 

3.1 System Model 

 
Figure 2 Three layer IoT fog framework 

Figure 2 illustrate the proposed three layer task offloading framework for 

IoT fog computing. 

The bottom layer is the IoT layer which contains several devices which 

is generating multiple tasks in unit time. The middle layer is the fog layer 

which contains distributed nodes. Each node in the fog layer received the 

information generated from each task in IoT layer. Then the nodes 

aggregate the sensor data, filter them and process them for further 

processing. The data are distributed in fog layer so the easy processing 

is possible in this layer. The next layer is the cloud layer which stores the 

processing result for further reuse. 

A. Computation Model 

For our proposed framework let there are n (where n=1, 2,…s) number 

of sensors are there in IoT layer. The Sensors are generating t (where 

t=1, 2…p) number of tasks which are sending to the fog nodes. In next 

layer i.e fog layer is having m (where m=1, 2….f) number of 

distributed fog nodes for computation and processing. The task is 

having properties like tsize.  

The latency in the proposed framework is the combination of 

transmission latency and computation latency. 

The transmission latency of task ti when uploaded to fog node mj is  

𝑙𝑖,𝑗
𝑡 =

𝑡𝑠𝑖𝑧𝑒

𝑚𝑡𝑟
                                  (1) 

Where 𝑡𝑠𝑖𝑧𝑒 is the task size and 𝑚𝑡𝑟 is the transmission data rate of 

the fog node. 

The computation latency of ti when uploaded and executed on fog 

node mj is  

 

𝑙𝑖,𝑗
𝑐 = 𝑏𝑖,𝑗

𝑡𝑠𝑖𝑧𝑒

𝑚𝑐𝑎𝑝
                       (2) 

Where 𝑏𝑖,𝑗 is the binary variable  𝑏𝑖,𝑗 ∈ (0,1) used to identify whether 

the task ti  is uploaded to the fog node mj or not. 𝑚𝑐𝑎𝑝 is the capacity 

of fog node mj and calculated as  

𝑚𝑐𝑎𝑝 = 𝑚𝑝𝑟𝑜 + 𝑚𝑏𝑤           (3) 

Where 𝑚𝑝𝑟𝑜 is the processing power of fog node mj calculated as  

𝑚𝑝𝑟𝑜 = 𝑚𝑚𝑖𝑝𝑠 + 𝑚𝑐𝑝𝑢          (4) 

Where 𝑚𝑚𝑖𝑝𝑠 is the number of instructions (MIPS) in fog node mj and 

𝑚𝑐𝑝𝑢  is the CPU utilization of fog node mj. 

The total latency will be 

    𝐿𝑖,𝑗 = 𝑙𝑖,𝑗
𝑡 + 𝑙𝑖,𝑗 

𝑐                                (5)  

The energy consumption of the fog node is the combination of 

transmission energy and computation energy. 

The transmission energy is the energy consumed for transmitting task 

ti to fog node mj and calculated as 

𝑒𝑖,𝑗
𝑡 = 𝑡𝑠𝑖𝑧𝑒 + 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(6) 

The computation energy is the energy consumed for execution of task 

ti  on  fog node mj and calculated as 

 

𝑒𝑖,𝑗
𝑐 = 𝑡𝑠𝑖𝑧𝑒 + 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑎𝑡𝑎 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(7) 

The total energy consumption will be 

𝐸𝑖,𝑗 = 𝑒𝑖,𝑗
𝑡 + 𝑒𝑖,𝑗

𝑐 (8) 

 

B. Deep Q-Reinforcement Learning Model 

 

In Internet of Things (IoT) scenarios, deep Q-reinforcement learning 

(DQRL) has become a promising method for network intrusion 

detection. Combining Q-learning, a reinforcement learning algorithm 

that learns to choose the best course of action in a given environment 

to maximize a reward signal, with deep learning is known as DQRL. 

DQRL agents can be trained to recognize and categorize network 

traffic patterns as either normal or invasive in the context of network 

intrusion detection systems by using the input they receive from the 

network environment. 

 

DQRL can be applied to intrusion detection systems in the IoT due to 

a number of important benefits. Firstly, DQRL agents have the ability 

to learn from big and intricate datasets of network traffic, which is 

crucial for efficient intrusion detection in IoT where data diversity and 

volume are always increasing. Second, DQRL agents are highly 

adapted to handle changing cyberthreats and the dynamic nature of 

IoT networks because they are adaptive and have the capacity to 

continually enhance their performance over time. Third, real-time 

threat mitigation and network edge intrusion are made possible by the 

distributed deployment of DQRL agents among IoT devices. In order 

to improve intrusion detection accuracy, current research in DQRL for 

NID is concentrated on creating more scalable and effective 

algorithms, enhancing the generalization skills of DQRL agents, and 

integrating other data sources including device logs and sensor 

readings. DQRL is expected to be a major contributor to IoT network 

security and cyberattack prevention as it develops further. 

 

In a Markov Decision Process (MDP), its states are illustrative of the 

system’s sub-problems. Thus, for some state 𝑠 ∈ 𝑆, we can define the 

value function with policy 𝜇  as 𝜗𝜇(𝑠) , and the expected return 

corresponding to the value function which acts with policy 𝜇 can be 

mathyematically defined as follows: 

 

𝜗𝜇(𝑠) = 𝐸𝜇[𝑅(𝑡) + 𝛿𝜗𝜇(𝑆𝑡+1)|𝑆𝑡 = 𝑠],    (9) 

where 𝛿 refers to the discount factor such that 𝛿 ∈ [0,1]. 
 

TD learning decomposes the estimation above with bootstrapping. 

Given a value function V : S → R, the simplest version, TD(0), is the 

following one-step bootstrapping: 

The temporal difference in the learning process decomposes the above 

expression in Eq.(9) by leveraging bootstrapping. Hence, for a given 

value function represented by the mapping 𝑉: 𝑆 → 𝑅(𝑡) , and the 

simplest order temporal difference can be represented by the below 

single-step bootstrapping as, 

𝑉𝜇(𝑆𝑡) ← 𝑉𝜇(𝑆𝑡) + 𝜃[𝑅(𝑡) + 𝛿𝑉𝜇(𝑆𝑡+1) − 𝑉𝜇(𝑆𝑡)],     (10) 

where 𝑅(𝑡) + 𝛿𝑉𝜇(𝑆𝑡+1) represents the temporal difference target, 

and 𝑅(𝑡) + 𝛿𝑉𝜇(𝑆𝑡+1) − 𝑉𝜇(𝑆𝑡)  provides the temporal difference 

error for the above Eq.(10). 

The value of a policy, as represented by the Q-function, offers a 

means to gauge the efficacy of a certain intrusion detection activity 

in the context of intrusion detection in an IoT-Fog system. We 

compute the Q-value, which indicates the predicted long-term benefit 



associated with doing a particular action in a given condition, to find 

the optimal course of action. The intrusion detection system is able 

to learn and adjust to changing threats since the Q-function is updated 

on a regular basis depending on feedback and experiences from the 

system. Thus, we can define the Q-function for our proposed system 

as below: 

𝑞𝜇(𝑠, 𝑎) = 𝐸𝜇[𝑅(𝑡 + 1) + 𝛿𝜗𝜇(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎].      (11) 

The simplest method for implementing an efficient intrusion detection 

policy in an IoT-Fog system is to take a greedy approach, in which the 

action with the highest Q-value is chosen at each stage. This can be 

accomplished by acting greedily for the policy function 𝜇′(𝑠, 𝑎) =
𝑎𝑟𝑔 max

𝑎′
𝑞𝜇(𝑠, 𝑎′) , such that the improvement in performance can be 

ensured by, 𝜇′(𝑠, 𝑎) = max
𝑎′

𝑞𝜇(𝑠, 𝑎′) ≥ 𝑞𝜇(𝑠, 𝑎). However, if the system 

doesn't consider other options, this greedy strategy could result in less than 

ideal performance. We can solve this by adding a small probability that an 

action, regardless of its Q-value, will be chosen at random. The system can 

balance exploitation (picking the most well-known action) with 

exploration (trying new actions to perhaps find better ones) with this 

technique, which is known as ε-greedy exploration. By averaging the Q-

values of the greedy and random acts, one may determine the Q-value of 

an ε-greedy policy. This can be stated as, 

𝑞𝜇(𝑠, 𝜇′(𝑠)) = (1 − 𝜖) max
𝑎∈𝐴

𝑞𝜇(𝑠, 𝑎) +
𝜖

|𝐴|
∑ 𝑞𝜇(𝑠, 𝑎)𝑎∈𝐴 .      (12) 

From Eq.(12), it may be noteworthy to mention that sum of  
𝜇(𝑠,𝑎)−(𝜖 |𝐴|⁄ )

1−𝜖
 

with action 𝑎 ∈ 𝐴  will equal to 1. Considering the fact that the 

maximization of the Q-function will not be lesser than its weighted 

average, we obtain the below expression for our assumption, 

𝑞𝜇(𝑠, 𝜇′(𝑠)) = (1 − 𝜖) max
𝑎∈𝐴

𝑞𝜇(𝑠, 𝑎) ∑
𝜇(𝑠,𝑎)−(𝜖 |𝐴|⁄ )

1−𝜖𝑎∈𝐴 +
𝜖

|𝐴|
∑ 𝑞𝜇(𝑠, 𝑎)𝑎∈𝐴

≥ (1 − 𝜖) ∑
𝜇(𝑠,𝑎)−(𝜖 |𝐴|⁄ )

1−𝜖𝑎∈𝐴 𝑞𝜇(𝑠, 𝑎)

+
𝜖

|𝐴|
∑ 𝑞𝜇(𝑠, 𝑎)𝑎∈𝐴 = 𝑞𝜇(𝑠, 𝜇(𝑠))

,      (13) 

From the above Eq.(13), it is clear that the Q-value to act upon the 

𝜀 −greedy policy 𝜇′  is more than the original policy 𝜇(𝑠, 𝑎), and hence 

ensures that the improvement in performance of the learning agent. 

In the DQRL, the off-policy approach allows learning from its past 

experience, and hence the simplest Q-learning update rule considering the 

set of states and actions over a given problem space can be expressed as, 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝜃 [𝑅(𝑡) + 𝛿 max
𝐴𝑡+1

𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)] ,       

(14) 

where 𝐴𝑡 represents set of time-dependent action and can be sampled over 

𝜀-greedy strategies w.r.t the Q-value, further it is worthwhile to mention 

that the actions 𝐴𝑡+1  are selected greedily in the proposed DQRL 

framework. 

 

IV. RESULTS AND DISCUSSIONS 

The simulation framework for fog computing, iFogSim, is used to 

establish the topology of the proposed paradigm. Three layers make up 

the topology: IoT devices, fog nodes, and cloud nodes. Sensor nodes 

gather information from their surroundings and forward it to fog nodes 

for further processing. Sensor node data is collected, processed, and sent 

to the cloud by fog nodes for additional study. Fog nodes can access 

centralized processing and storage resources thanks to the cloud. A 

gateway node is connected to four fog nodes in the experimental 

configuration. The computing power and available network bandwidth 

of the fog nodes vary widely. Numerous sensor nodes can be connected 

to a single fog node since the mapping between the sensor nodes and fog 

nodes is many-to-one. Numerous applications, such as network intrusion 

detection in the Internet of Things, can make use of the suggested 

paradigm. Fog nodes are able to recognize and categorize network traffic 

as either normal or intrusive by examining patterns in the traffic. 

Afterwards, suitable action can be taken to lessen network attacks using 

this knowledge. 

 

IoT devices, fog nodes, and cloud nodes are the three levels that make 

up the system in this figure. Sensor nodes gather environmental data 

from their location at the network's edge. Data from sensor nodes is 

gathered and processed by fog nodes, which are situated closer to the IoT 

devices. Fog nodes can access centralized processing and storage 

resources from cloud nodes, which are located in centralized data 

centers. The data flow between the levels is depicted by the different 

layers in Figure 2. Data is sent from IoT devices to fog nodes, which in 

turn send data to cloud nodes, which in turn send data back to fog nodes. 

To schedule tasks and allocate resources, fog and cloud nodes 

communicate with one another. A possible method for network intrusion 

detection in the IoT-Fog system is the suggested paradigm. Through the 

utilization of fog nodes' distributed processing capabilities, the paradigm 

can offer real-time intrusion detection with minimal latency and optimal 

accuracy. In this study, we used the well-known benchmark NSL-KDD 

dataset, that comprises of a set of labeled network traffic data and is 

useful for building the model for testing and training the performance of 

the IDS. There are many different kinds of traffic in the collection, 

including malicious and legitimate traffic. The type of attack, such as a 

user-to-root, spoofing, root-to-local, or denial-of-service (DoS) attack, is 

indicated on the malicious traffic. When creating IDS for IoT-Fog 

systems, intelligent learning systems can benefit greatly from the NSL-

KDD dataset. 

 

Figure 3 depicts the comparison of training accuracy obtained for the 

proposed DQRL algorithm over convention algorithms viz., Deep Neural 

Network (DNN) and conventional reinforcement learning (RL). It was 

observed that with the increase in number of fog nodes, the training 

accuracy increases as the model is trained over its past experience from 

preceding fog nodes. Figure 4 provides the comparison of test accuracy 

over varying number of fog nodes. It was observed that as the number of 

fog nodes increase, the test accuracy observes a decrease. This is due to 

the reason that the testing sample instances becomes decrease with 

increase in fog nodes. It was also observed from our experimental 

findings that the proposed DQRL approach outperformed all others due 

to the 𝜀 −greedy approach incorporated in the learning phase of the 

model. In figure 5, the comparison for precision, recall, and f-measure is 

illustrated for the three models considered in this study. It was inferred 

from the figure that the DQRL algorithm depicted superior performance 

for all the three performance metric considered in this study. In Figure 6, 

the energy consumption of the DQRL model is compared with the DNN 

and RL algorithms with varying the number of tasks processed. It was 

observed that the proposed DQRL was more robust towards these 

dynamic behaviour of the system and outperformed the other two by 

showing relatively lower energy consumption. Finally, Figure 7 provides 

the delay incurred for processing the tasks by various models considered 

in the paper such as DNN, RL, and DQRL. It was noted from the 

simulation finding that the delay for the DQRL model was the lowest as 

compared to the DNN and RL models, depicting its adaptiveness in 

heterogeneous and dynamically changing IoT-Fog system. 

 

 

 
Figure 3: Comparison of training accuracy for proposed DQRL model 

with DNN and RL over different number of fog nodes. 



 
Figure 4: Comparison of test accuracy for proposed DQRL model with 

DNN nad RL over varying number of fog nodes. 

 
Figure 5: Comparison of precision , recall, and F-measure for proposed 

DQRL along with DNN and RL algorithm. 

 
Figure 6: Comparison of energy consumption in millijoules for DNN, 

RL, and Proposed DQRL. 

 
Figure 7: Comparison of delay in milliseconds for DNN, RL, and 

Proposed DQRL. 

 

V. CONCLUSIONS AND FUTURE WORK 

While the attack surface for cyber threats has grown due to the 

increasing popularity of IoT devices, intrusion detection is essential 

for guaranteeing the security of IoT-Fog systems. The dynamic 

nature of cyberattacks often makes it difficult for traditional ID 

techniques to stay up to date. The suggested DQRL model's capacity 

to learn from and adjust to changing threat landscapes has made it a 

viable method for intrusion detection in IoT-Fog situations. An IDS 

for IoT-Fog networks based on DQRL was proposed in this paper. 

The suggested method made use of the fog nodes' dispersed 

computing power to provide real-time ID with low latency, high 

precision, and energy efficiency. Based on input from the network 

environment, the DQRL agent was able to recognize and categorize 

network traffic patterns as either regular or intrusive. The system 

used a number of methods to improve performance, such as effective 

incentive systems, adaptive exploration tactics, and deep neural 

networks for feature extraction. The suggested DQRL-based system 

outperforms conventional IDS methods in terms of detection 

accuracy and flexibility to changing threat patterns, as evidenced by 

evaluation results over the well-known NSL-KDD IDS dataset. A 

broad variety of cyberattacks, including as malware infections, 

denial-of-service attacks, and command-and-control 

communications, were successfully recognized and categorized by 

the system. It is possible that the suggested solution will be crucial 

in safeguarding IoT-Fog networks and thwarting cyberattacks. To 

sum up, the suggested DQRL-based ID system presents a viable 

method for accurate, adaptable, and real-time ID in IoT-Fog 

situations. The system is well-suited to protect IoT-Fog networks 

from assaults because of its capacity to learn from and adjust to 

changing threat patterns. Prospective avenues for investigation 

encompass researching the utilization of diverse deep learning 

architectures for feature extraction and investigating the application 

of DQRL to ID in more fog computing scenarios. 
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